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A high-radix FFT algorithm for computing transforms over GF(q?), where q is a
Mersenne prime, is developed to implement fast circular convolutions. This new algorithm
requires substantially fewer multiplications than the conventional FFT.

l. Introduction

Several authors (Refs. | through 3) have proposed the use
of the fast Fourier transform (FFT) over finite fields or rings.
Such transforms can be used to compute circular convolutions

of real or complex integer sequences without round-off error
(Refs. 4 through 11).

Recently, Winograd (Ref. 12) developed a new class of
algorithms for computing the conventional discrete Fourier
transform (DFT). This algorithm requires substantially fewer
multiplications than the best FFT algorithm previously
known.

Reed and Truong (Ref. 5) extended the integer transforms
of Rader by defining a complex number-theoretic transform

(CNT) over the Galois field GF (¢2), where ¢=2P - 1 is a
Mersenne prime. An FFT algorithm of length d = 2%, where
I<k<p+]1, can be carried out in GF (¢*) with d log, d
multiplications. In this paper a mixed high-radix transform of
GF (¢?) is developed that requires only dm multiplications
where m is a fractional number, depending on the factors of d,
where d is an integer of form 2% -p(0<k<p+1). This
algorithm for GF (g?) appears comparable in speed with that
given by S. Winograd.

Il. Transforms Over GF(q?)

Let GF(q?) be a Galios field, where ¢ is a Mersenne prime,
and let the integer dlg? - 1. Also let the element ve GF(q?)
generate the cyclic subgroup of d elements G, = (v,72, -

>
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vd=1, 1) in the multiplicative group of GF(q?). Then a
transform over this subgroup G, can be defined by the follow-
ing (Ref. 5):

d-1
A=Y ay” for0<f<d- 1 (1)

t=0
where

a(t)eGF(g?) for0<r<d-1

By Fermat’s theorem 2P~ ! =1 mod p. Hence pl2°7! - 1.
Thus, ¢ = 2P*1 (277! - 1) has the factor d=2P"! .p. A
mixed-radix FFT algorithm will be developed now to calculate
transforms of d = 2% - p points, where 0 <k <p + 1.

To perform the transform over GF(q?), where d|2P*! - p,
it is necessary to find primitive elements in the d-element
cyclic subgroup G, in GF(q?). To do this, let & be a primitive
element of GF(g?). Using a computer program, one can
choose an element & = a + b, where a # 0 and b # 0, such that

a2p+1(2p_1‘1)/25—1m0dq )

If a = g +ib satisfies Eq. (2), then, by Theorem 1 of Ref. 5,
o =a+1b is an element of order 2°*1 (27! - 1)in GF(q?). If
d=p 2% where 1<k <p+1, then the generator of Gy, a
multiplicative subgroup of order d, is evidently

y=22P 7 ECP T

Also, ¥ is a primitive element in G4 forj=1,3,5,,-,d~- 1.

Brigham (Ref. 13) shows that a mixed-radix transform of
length d=r r, ---r , where r, are the n radices, requires
d(r +r, +.--+r) complex additions and d(r1 tor,
+..-+r,) complex multiplications to perform a conventional
mixed-radix FFT. To develop a similar mixed-radix FFT over
GF (g?), it is desirable that multiplications, involving the rih
roots of unity for i=1, 2, -- -, nin GF (g2), be accomplished
by circular shifts. As we shall see, this is made possible if one
chooses d= rry ---r,=2%-p, where r,=2 or 4 or 8 for
i=1,2,---,n-1and r, =8p, where 0 <k <p+1. It will
next be shown that each r!" root of unity is a power of 2
modulog fori=1,2,.- . n
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To see this, suppose 7 is a generator of the multiplicative
subgroup G, of order d, where d = 2k pfor 0<k<p+l.
Then by Theorem 1 of Ref. 5, +y satisfies

Y2 =-1modgq 3)
But also,
(1+)*P =(-4P =-1mod q (4)

where g is the Mersenne prime 2P-1 so that again by Theorem
1 of Ref. 5 (1 +?) is an element of order 8p. This result has
also been given in Ref. 7. Thus, combining Eqs. (3) and (4),a
generator v of G satisfies

¥3187 = (1 +7) mod ¢ Q)

By Eq. (5), a computer program can be used to find
primitive element 7y of G, that satisfies Eqs. (3) and (5). Note
that the powers of y¢/8P are powers of 2 modulo ¢, i.e.,
¥414P =2 mod g, Y4127 =22 mod g, y¢/P = 2% mod g, etc.

In GF(g?), the equation X2 = -1 mod ¢ has the unique
solutions X =+7 mod ¢. Hence, y/* =7 or -7 mod ¢. The

powers of ¥ 4/% are thus 7, -7 1, or-1.

The following theorem given in Ref. 14 is stated now
without proof. It is useful for finding the eighth roots of unity
in GF(q?).

Theorem 1. If ¢ = 2P -1 is a mersenne prime, then the only
solutions of X2 =+ mod g over GF(q?) are

X=£2P"D2 1+ modgq

By Theorem 1, (y)?/% is one of the forms x2®~1/2 (1 +7)
mod g.

If one combines the results of the above three paragraphs,
one has shown that complex multiplications by y4/%i or its
powers for r;=2, 4, 8, 8p can be accomplished simply by
circular shifts instead of multiplications. Hence, if one applies
a mixed-radix FFT algorithm (Ref. 13) to a transform over
GF (g?), the set of ripoint DFT’s can be evaluated without
complex integer multiplications before referencing by the
so-called twiddle factors. As a consequence, the maximum
number of modulo ~g complex integer multiplications by ¥/
G=0,1,2,---, d- 1) needed for an FFT over GF(g?2) is



d(n- 1) where d =2%p, n is the number of FFT stages, and
0<k<p+1. Consider now a simple example: Let

q=23-1;d=rlr2=(23p)-2=24><2, p=3

A mixed-radix, decimation-in-frequency, twiddle factor, FFT
algorithm over GF(7?) is described as follows for this example.

Let fand ¢ in Eq. (1) be expressed in two ways as:

f=1, - 8+f =\ 1) ©)
r=t, 2+t =(0,10) )
where
0<f =1 0sf,<23
0<¢ <23 0t <

Substituting Eqgs. (6) and (7) into Eq. (1) yields

r.—1 r -1

27
(F -24+f )1, "2+ )
A(flfo)zz Z alty )y e

t0:0 tl—’—O

The mixed-radix FFT algorithm over GF(72) for d = 48 points
is composed of the following two successive stages of
computation:

Stage 1:
(1) R Foti 2] Fol
AVt )= z a(t )y y 00 (8

f=0

Stage 2:

1
> ADG T

tO:O

AD(f 1=

Since (4 +1)2% = -1 mod 7,y =4 +7is a primitive element
in GF(7%). By Eq. (5), this choice of v yields 2 =(1+7)
mod 7. Hence, using this and the fact that 748 =1 mod 7 and
¥** =-1 mod 7, it is clear that the term ¥/ °'!"? in Eq. (8)
can assume only the values 1 or plus or minus a power of

(1+7).

Since multiplications involving £1 do not involve a multipli-
cation, and since multiplications involving powers of (1+7)
mod 7 can be achieved by circular shifts, the 24-point discrete
Fourier transform in the brackets of Eq. (8) can be evaluated
without a multiplier unit. The results of Eq. (8) are referenced
now by multiplying the twiddle factor vy 0’0, This requires a
total of 12 complex integer multiplications modulo 7 for
evaluating Eq. (8). Since y?%=-1 mod 7, by an argument
similar to that used in Eq. (8), it is clear that Eq. (9) can also
be evaluated without multiplications.

The number of complex integer multiplications used to
perform a mixed-radix FFT over GF(¢?) of d =r, r, points,
where 7, =23p, r,=2 or4 or 8,and ¢ =231 - 1, is given in
Table 1. The present algorithm, Winograd’s new algorithm
(Ref. 12) and the standard FFT (Ref. 15) are compared in
Table 1 by giving the number of real multiplications needed to
perform these algorithms. The results for Winograd’s algorithm
were obtained from Ref. 11, Table 2. In Table 1, one can see
that the transforms over GF(g?) of d =31, 62, 124, 248
points can be evaluated without multiplications. For d > 248,
the transforms over GF(g?) appear comparable in speed with
that given by Winograd (Ref. 12).
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Table 1. The complexity of the transform over GF(q®), where q = 2°' — 1

No. of real integer
multiplications of

No. of real multipli-
cations of Winograd’s

2dlog,d real
multiplications

d transform over GF(qz) new algorithm for for conventional
of complex data complex data FFT (d is a power of 2)
3t 0
30 72 295
62 0
60 144 709
124 0
120 288 1658
248 0
240 648 3796
496 496
504 1872 9050
992 1984
1008 4212 20115
1984 5456
2520 11232 56949
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